Analysis of an Analog Optical Neural Network
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Optical Neural Networks

 Neural networks: powerful machine learning model, but energy consuming [1]
e Potential solution: Optical Neural Networks (ONN) [2]
 Requirements: Reprogrammable, Energy Efficient, Computational Speed
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Figure 1. Schematic of the ONN consisting of ten MZls, each of which configured
with two phase shifters.
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* Reprogrammable: Thermal phase shifters allows for full reconfiguration of
optical chip (i.e., change weights [W],x4 in Fig. 2)

* Energy efficient: Inherent parallelism present in optics, can efficiently compute
matrix multiplication using waveguides and beam splitters [3]

 Computational Speed: processes matrix multiplication in linear time as
opposed to quadratic time for GPUs [4].
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Figure 2. Schematic of a single layer neural network.

Stochastic Optimization Algorithm

« Start with 20 random phases 6;and ¢; for i =1,2,3,...,10
Check accuracy
* While accuracy is smaller than required accuracy:
. Pick one random phase
. Set it to a random value, recheck accuracy
. If accuracy increased:
Keep changed phase
. Else:
Revert back to previous phase

Condition for Accuracy

Neural Network correctly classifies a sample if:
argmax(?) == argmax(Y)

Extra Condition for Accuracy

Extra condition, to consider experimental phase error:

YMax T YSecond Max > Z
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* Created synthetic dataset to characterize single layer ONN.
 Datasetis linearly separable, i.e., perfectly classifiable.

X3
Figure 3. Scatter plot of the dataset . X; forj = 0,1, 2, 3 are the
features of each class indicated by the different colors.

Sources of Phase Error

* Thermal crosstalk between MZls
 MZI voltage source inaccuracies
e Silicon photonic fabrication process variations
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Figure 4. Simulation results of effect of phase noise on accuracy. Increasing
the threshold zeta decreases the accuracy of the neural network.

 Asingle layer ONN was theoretically investigated.

* Using a stochastic optimization algorithm, the optimal phases for the ONN
were determined.

 An arbitrary four feature four target dataset was classified.

* The effect of phase errors on the classification accuracy of the ONN was
analyzed.

* Future work: more complex ONNs with higher energy efficiency and lower
phase errors.
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